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SP-100 ATTITUDE OONTROL PATHFINDER STUDY

F. 0, EBke, S. H, Graff, R. A, Laskin, P, A. Swan

ABSTRACT

This report delineates the scope of Jet Propulsion Laboratory’s FY'83 effort
in the attitude control area in support of the SP-100 program. Dynamic
modeling of the baseline besm configuration has been conducted and is
presented herein. As a first cut, the beam is treated as rigid, Its inherent
flexibility is then integrated via the hybrid coordinates method. Using the
resulting dynamical equations, a praliminary look at attitude control is
taken. Oxnly one axis of rotati~» 2.l one flexible mode are included. An
alternative to the beam con- rira.svion is one that envisions conmecting
basebody to user via a ioag, !ightweight, flexible tether, A literature
search has been conduct2d in this area and the resulting bibliography is
presented. The ‘ethe. option is not comsidered viable near term. However, it
offers seversl yotentially significant advantages and thus deserves serious
consideration for the next goaerstion space power system.

This report also treats attitude control constraints imposed by the high
temperature and radiation environment and addresses the issue of hardware
requirements and aveilabdbility.

Recommendeations for FY'84 tasks include assembling and exercising a
simulation program for the beam configurstion dynamic model and conducting a

technology assessment in the area of tether dymamics and control,
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I. INTRODUCTION

Abundant electrical power is a vital ingredient inm our progress inm
space. This power is needed for large communication and navigation
satellites, space stations, and exploration of the solar system.

The SP-100 nuclear space power system is nominally a 100 kW, power source
for applications which require high power and long life. The preliminary set
of requirements calls for continuous power delivery for a period of scven.
years,

SP-100 requires an attitude control development to imsure proper
utilization of the current and future techmology. Total integration of all
the system components by JPL requires a design concept for each sub-system
which can be used to compare, critique, and assess contractor inputs, The
SP-~100 challenges and opportunities for attitude control analyas~ ¢ slude
high reliability, high radiation levels, large temperature variations, long
lifetimes, unusual vibratioms from rotating and reciprocating machinery, and
unique user requirements.

This study assessed the technology available for the baseline in the
areas of articulation and deployment and dynamics and control of beams (with
beam baseline of 25 meters), attitude control constraints, and finally the
hardware commonality. An additional look at the concept of tethers, as a
potential technology for the future, enables the program office to better
assess the proposals of the comtractors. The final conclusions and
recommendations fill out the study witl ideas and rationale for the future

program office efforts.




I1, BEAM DYNAMICS AND CONTROL

The SP-100 system may be visualized, as shown in Fig. 1, as two bodies
B; and By connected by s flexible truss B3, and in orbit around the earth.
By is the power generating unit and may or may not be more massive than By
Depending on the precise type of power generation system adopted, B; may carry
rotating or reciprocating machinery as well as working fluids.

The saim of the study reported here is to develop an sacceptabdle
mathematical model for the SP-100 system and to identify potential problems
related to the attitude dynamics and control of the system.

II.A. Rigid Bodv Formulation

II.A.1 General Configuration
As a first step in the modeling of the SP-100, the s—stem will be

assumed to comprise two rigid bodies B; and By commected by a rigid rod B3
as shown in Fig. 1. m,; and I; represent respoctively the mass of body Bj,

and the inertia dyadic of body B; for its center of mass Cj;e
The angular momentum of the system may be written as

E= (TatlatI3) * o+ 3 mixg x (exzj) )
where ¢ is the angular velocity of any of the bodies, and Z; is the position
vector of Cj With respect to the center of mass C of the whole system., If
one lets '

I=1I;+ 1+ 13 (2)
then

H‘I'ﬂ"'zni;ix(mx;_i) (3)
and

E=I -0+ex]-g "’2 {mirix(oxgi)+mizixlex(uxgi))} 4)
or

E=T:.9+pxT.g + Y my{~rix(zix)-wxlzix(zizw) 1) (5)

If matrix formulation is desired, the unit vectors g1, 2, ¢3» 8re writtem as
a vector array




FIGURE 1: SP~100 System



(o) = :;

(6)
L2
and matrices H, , Ty, and I; are defined as follows:
Hy | .
H=le; 0y 0,) :y = (g)TH (7
z:
x
@e=leyop0,) laug| = (2)Tw (8)
Wy
Tix| T
xi = {ﬁx £y ,!z} tiy - {2} T (9)
Tiz
and
I I I
ix ixy ixz
Ii - Iixy Iiy Iiyz] (10)
Iixz Iiyz I;2
The matrix equivalent of equation (5) then becomes
H=Io+ 0le +3 my (-F;F;0-0F;Fu) (11)
where the tilde (~) sign implies the cross opzrator; for example
0 "™ wy
W= |o 0 Wy
~wy wy 0
Defining
Ij = I; - m§y%%y (12)
and
X' = I§ + I3 + I3 (13)
Eq. (11) could be written in the more compact and familiar form
H=Y'v + Q80w =X (14)

where M is a column vector whose elements are the components of the moment
about the system mass center C of the resultant force on the system.
Equation (14), supplemented with appropriate kinematical equations and

control equations, may be used for the simulation of the motion of the

|




system.

I1.A.2 Symmetric Configuration

Real engineering systems of this type usually possess some amount of
symmetry. In the specific case of SP-100, it is not unreasonmable to assume,
for example, that the axis of the rod By passes through all mass ceaters, and
that lines parallel to g3, g3, and g3 &re¢ centroidal principal axes for each
of the bodies, The equations of motion in this case still have the foram of -
equation (14), however, the expression for I' is much simpler. For three axis
stabilized systens.'like the SP-100, it is customary and reasonable to
further assume that @ is small so that the OI'v term in equation (14) drops
out, leading to the simple decoupled equations

we = Mg/Ig

@y = Ny/Iy " (15)

0y = M /I,

II.B Flexibilitv Considerations
II.B.1 Model Description

Once the rigidity aasumption of the previous section is discarded, one
immediately runs into the difficulty of modeling a system which now includes
a flexible beam between two rigid bodies. Several approaches to the analysis
of flexible vehicles are treated in references [2] through [5]. When the
uitimate aim is to arrive at equations of motion for computer simulation, the
dynamical equations must be amenanable to a form (through appropriate
coordinate transformation) that facilitates coordinate truncation so that
system deformation may be represented by a finite number of "modal"
coordinates.

The approach adopted in this study is the hybrid coordinate method of
Likins [2]. This method is most useful when portions of an otherwise rigid
vehicle nndergo deformations that may be reasonably assumed to remain
"small," For an efficient use of the above method, the SP~100 is modeled, as
shown in Fig. 2, as a rigid body B; with a linearly elastic flexible
appendage A, B is taken to be the more massive of the two end masses of the
real system, and the other end mass together with the flexibie beam




FIGURE 2: TFlexible Bean Model




. coastitute the appendage. A, Should B, pe the larger mass, then it would be.
" regarded as rigid and the remainder of the system considered as a flexible

appendage.  The next step is the derivation of equations of motion for the
system just described, and this will be done by deriving the equations of
motion for each appendage and then suppiementing these with the equations of
motion of the whole systex viewed as a unit.

XI1.B.2 Appendage Equations

Consider the system in some general configuration depicted in Fig. 2,
The appendage A undergoes "small" deformations relative. to the base By, while
the motion of By is arditrary. A is now idealized as a collection of n
elastically interconnected discrete rigid sub-bodies, A being ome such sub-
body. Damping is ignored at this point; it wll be imcorporated in the model
at a later stege with the introduction of modal coordinates. The dotted
lines in Fig. 2 show the position of A before deformation; point 0 is fixzed
in inertial space, S* is the system mass center, and 0’ is the location of S*
when the system was undeformed, and is therefore fixed in By,

For the sub-body A,»

" E, = n.3, (16)
where Fg is the resultant force om Ag, mg is its mass, and pg is the position
vector of the center of mass of A, relative to 0. On the other hand, it is
clear from the figure that

R;=X+C+R+ g, + 3, (17)
where
X is the vector from O to S®
C is the position vector of 0’ relative to S*
B is the vector from 0' to a point Q fixed in B,
I vector goes from Q to the location of the mass center of
A, in the undeformed configuration, and
Is is the position vector of the mass center of A; relative
to its location in the undeformed coanfiguration.
Hence
Eg = n (X +C+ B+ 5+ 4y) (18)

Coiumn matrices X, C, R, ry, and ug are now defined as follows




Xy
X= (i 15 43) [x; = (1)TX (19)
X3
;]
€= (b by b3) ch = (p)Tc (20)
€3

R, ]

B = (b by b3} [Rp| = (R}TR (21)
B3

’rsl-
Xg = {by b2 b3} |rea]| = ()Tr, (22)
L’:‘3-'
.uslq
g = {bg ba b3} |ug2]| = (2175, (23)
g3

It then becomes possible to write Eq. 18 in matrix form as

Fgy = m, n§i+t+2ué+mm(c+x)-(€+i)é—(r.+um)¢+gu(,'+n‘)
*28u ) (24)
where @ is the transformation matrix between the i and b bases given by

WT = 1T (25)

The matrix C represents the motion of the system mass center in By, and may
be shown to be given by

C=- 3 #.u, (27)
where Hg = mg/ (Y mg) (28)
Equation (27) and its time derivatives may be substituted into equation (24)
to give

Fg = ug[®X + 8 -3 iyl + 28(ug = Y ppug) - (B4F)a + G(u, - ¥ uxuy)

+ W (Rexgtug— 2, pyuy)) (29)

The equations of rotationsl motion of A‘ are obtained by equating the
resultant external torque on Ay t0 the time rate of change of its inertial
angular momentum, Since the rotation of A' relative to By is due only t»o

"snall” structural deformations, this rotation can be represonted by the
vector

84 = Bgiby + Bg2b2 + Pg3b3 (30)

10




where B4, ﬁ,z,ﬁ,g are three angles of rotation about the ortbogoma) axes bj,
b2, b3. Hence, the angular velocity matriz wg of Ag tskes the form
0‘ = g + (h}T é‘ (31)
Finally, the equations of attitude motion of A; can be put in the form
. -~ . ~ 4 f\'./ ~ o~ ~p o
Ty = Ig(a+Bg) + [T BHI ~(1,0)],+8 0 + [Tgu-(Xg0)-B(1,0)+31,31B, (32)
where
Tg is the resultant torque matrix
and Ig is the centroidal inertia matrix of Age
For a three-axis stabilized system, equations (29) and (32) mry be lirearized
in @, they then reduce respectively to

my (g -3 upliy) = m@®X + (B+2)0 + F, (33)
and

TPy = ~Ib + T, (34)

II.B,3 Vekicle Equations

Equations (33) and (34) are not sufficient for the complete description
of the motions of our system. They will now be supplemented with the
dynamical equations of the whole vehicle.

The vehicle translational equation is

E = mps* (35)
where F is the resultant external force on the whole vehicle, m is the total

mass, and 3%°% is the acceleration of the system mass center. The matrix form
of equation (35) is

F = a®X (36)
and the rotational equations for small w can be written in the compact form
T= 1% + RZ Bl + Z Temgliy "’2 Isﬁs 37)

where I®* is the inertia matrix of the undeformed vehicle for the point 0’ of
Figure 3. A comparison of Equations (i5) and (37) indicates that the effects
of beam flexibility are contained in the last three terms on the right hand
side of Equation (37). Equations (33), (34), (36), and (37) form a set of
6p+6 scalar equations with X,®, v, u, and By (6n+9 in mumber) as unknowns.
And together with a set of kinematical equations relatiug @ and w, and

control equations, they are sufficient for the simulation of the motions of
the systenm.

11




IXI.B.4 HModal Truncation

The difficulty with the equations mentioned above is simply their
dimension due mainly to the appendage équations whose number is directly
proportional to a., The objective in this subsection is to attempt a
reduction of the dimension of the equations of motion through some type of
coordinate truncation, This naturally imvolves the iniroduction of a linear
transformation for at least some of tho variables, and this transformation
must give rise to decoupled equations so0 as to permit valid truncation,
Here, such s transformation is applied to the appendage deformation

coordinates only. First, the appendage deformation coordinates are organiced
into a coordinate matrix q defined as

a = (s} o} o} p} 83 p3 uf vf o3 pf 63 3 ... BT (38)
Because the appendage egquations (33) and (34) are linearized in the

deformation coordinates u, and B;, these equations can be written in matrix
form as

NG +D'¢q +X'q =L’ (39)
By inspection of equations (33) and (34), it becomes evidert that N is a
constant symmetric matrix. F, and T; in equations (33) and (34) include
structural interaction forces and torques between neighboring sub-bodies of
A, These interactions may be visualized as linearly elastic and viscous
forces and torques that are proportional to the deformation and deformation
Tates. Hence D' and k' are also constant matrices; all the damping
coefficients go into D’ and all the stiffnesses go into K'. L' depends on®,
i. and the external applied forces and torques that may appear in F‘ and T,

Classical modal analysis techniques can be applied to our system by
first igonoring damping and comsidering

N'g + K'q= L' (40)
This leads to the choice of the normal-mode transformation

qQ= ¢ (41)
which in turn transforms equation (39) into

fi+ 2ton + o2q = ¢TL’ (42)

where 3 is the column matrix of modal coordinates, ¢ and { are diagonal

matrices of natural frequencies and damping ratio, and ¢ is the modal matrix.

12




Equations (42) are now decoupled and may be truncated to a convenient size.
If 7 is the truncated form of 1, the appendage equations now take the form

N+ 20f + o2f = ¢TL (43)
Depending on the number of "modes"” reteined, this truncated form of the
appendage equations, together with the vehicle eqguations could constitute a
much smaller set of dynamical equations, and therefore much cheaper to
integrate on a computer.

I1.C Effects of Rotating and/or Reciprocating Machinery
II.C.1 Rigid Formulation

The addition of & rotating element to one of the mair. bodies of the
system introduces a slight change in the equations of attitude motion. For
example, let us examine the case of Fig. 1 where the connecting rod between
B; and B; is assumed to be rigid, and body By contains a rotor. If this
added rotor is uxisynmetf:lc, then By is a gyrostat and the system angular
momentum is augmented by a term h which represents the angular momentum of

the rotor relative to the basebody B;, Equation (15) then has the matrix
form

T=JIo+ k- B (44)
which now includes a "gyroscopic stiffness” term. Hence, the motion of an
axisymmetric rotor im By does affect vehicle motion. The importance of this
effect depends on the imertia of the rotor, and its spin rate relative to the
basebody By, If the rotor mass center is offset from the spin axis, the
system's dynamics is further complicated by tkhe appearance of new terms
involving this offset,

1I.C.2 Flexible Body Formulation

In the case of a flexible beam, the presence of a rotor on body By can
affect both the appendage equations and the vehicle equations. The appendage
equations can only be affected through the column vector C (see Eq. (24))
which represents the motion of the system mass center in body By If the
rotor i3 axisymmetric, then the location of the system mass center is not
modified by the motion of the rotor, and hence, the appendage equations
remain unchanged. This means that the procedure and results of the

13




coordinate matrix truncation are unaffected by the motion of & symmetric
rotor in Bj. However, the vehicle equations change slightly because the
expression for the angular momentum of the system is modified by the presence
of the rotor. The vehicle equation of rotational motion becomes

TeI% +B-Fo+ R 06, +3 I, +3  Tumgts (45)
The first term on the right hand side of Eq. (45) is the rigid body term. It
is the only tefm that would remain if the whole system were one rigid body.
The second and third terms are due to the presemce of the rotor, and the last
three terms are contributions from the system's flexibility.

If the rotor mass center is not located on the epin axis, the rotoz's
motion will affect the location of the system mass center., That is, the
appendage equations will be impacted through the C matrix, and the modal

analysis technique used above breaks down because D' and K’ are no longer
constant matrices.

II.D Contrel Svstem

Since our system is three—axis stabilized, the elements of the matrix w
are small, and we can let

w=8 (46)
where @ = [e; 6 6317 (47)
and €;, 6,, 63 are vehicle rotation angles. If our interest, from controls
point of view, is limited to ©, it will be necessary to display clearly the
relationship between the control torque T and the rotation angle 6. As s
simple exampie, we consider the case of negligible external force and torque
on the appendage. System equations may then be reduced to

T = (%6 - 8T (48)
and § + 230§ + a2y = 88 (49)
The Laplace transform of these equations yields

T(s) = s21%9(s) - 8Ts2n(s) (50)
and 327(s) + 2siofi(s) + o2f(s) = 5286(s) (51)
Equations (50) and (51) can be combined to give

0(z) = [sI* - s45TD8]1-1T(s) (52)

14




where D is a diagonal matrix given by

i 1 o
+242¢ 101 540}
1
D = 2420 505 s+ 0% (53)
0 1
242  veriat ol
I s2+2{\onstof |

In the special case when the coordinate truncation is carried down to a
single modal coordinate, Eq. (52) bescomes

1 1 -1
0(s) =77 [1e - $281T81 250 0 1 g2)]  T(s) (54)

A block diagram representation of this control system is shown in Fig. 3, If
it is further assumed that dynamic response in this single mode
representation influences vehicle response about ome axis only, and that the

inertia matrix I* is diagonal, then the dynamics block of Fig. 3 can be
expressed as

34(5%)2 -1
(5S)

G(s) ‘[13' = (2421101 5+0])

where o is the single axis considered. This expression can eventually be put
in the form

6(s) = 62+2 +
: 1354 (s4E+2¢01s+0%) (56)

where =1 - (812
E=1 "'f:— (57

In the case of simple gain control,

H(s) = K (constant) (58)
and the characteristic equation becomes

s4 (IE) + 83(2I85101) + s2(X%03+K) + s(2K{103) + Kof = 0
An examination of the Routhian array for this systea indicates asymptotic
stability for positive K

15




Control Dynanics Block

'1"(.) Torque

, T(s) c(s) 6(s) 8(s) Attitude
Reference *
Torque <

H(s)0(s)
0(s)
H(s)
Control Block '

FIGURE 3: 3Block Diagram
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II.E Findings

The formulation of equations of motion for the SP-100 system could be
described as complete. If the comnecting structure of the system is assuned
to be rigid, the equations of motion are very simple and decoupled. When the
flexibility of the structure is taken into account, the system is modeled as
s main rigid body with an attached flexible appendage, the other rigid body
being assimilated into the appendsage. Furthermore, the appendage is nodeled
as & system of elastically interconnected rigid sub~bodies. The complete
dynamical equations of the system are then composed of the sppendage
equations together with the complete vehicle squations. Truncation of these
equstions is achieved through modal analysis of the appendage equetions.
These reduced dynamical equations can thenr be completed with kinmematical and
control equations for the purposes of vehicle motion simulation.

¥hen the basebody contains a perfectly axisymmetric rotating or
reciprocating sub-body, the effects of the motion of auch a rotor are easily
accommodated in the analyses presented because they are decoupled from
flexibility effects.

A preliminaxry analysis of the control system using the extreme example
of single axis response of an appendage represented by a single wmodal

coordinate, with simple gain control, reveals asymptotic stability in every
casSet.
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III. TETHER CONFIGURATION

The SP-100 program has tvo major areas for potentisl benefit and two
aress of smaller potential for future utilization of tether technology. The
major aspects of tether technology that apply to SP-100 are 1) radiation
attenuation and 2) disturbance isolation The two ancillary sspects of the
tether technology are 1) the ability to provide gravitational fields and 2)
the adjustment capability for attitude coantrol without the use of
propellants. These benefits will be discussed further, The concept of
tethers and their applications in space have recently identified potential
applications to both Earth and interplametary missions. Notably, tethers can
provide unique techniques for scientific measurements. By using a
constellation of tethered satellites, simultancous sampling and multiple
measurements of electromagnetic and atmospheric characteristics at
stexscgraphic observations, sample retrieval of low altitude atmospheric gases
of a planet, such as Jupiter, or a fly-by comet can be easily accomplished
across multiple locations., Tethers also provide the option of using less fuel
for maneuvers such as spacecraft insertion, orbit adjust, and science probe
injection towards planets.

Extensive work has been done in the dynamics and comtrol of space
vehicles; however, the addition of long (in excess of 80 km) tethers creates
new and unusual aspects to the calculations. The initial efforts by NASA in
the early days of Genini‘studied the dynamics and contrel of short tethers
(order of 100 m) to provide gravity gradieat stabilization and spin induced
gravity. These activities were accomplished both in orbit and in
simulations., Recert effokts have surfaced with emphasis on the uses ot long
tethers mainly due to the better understanding of the dymamics pioncered by
Professor Colombo of the Smithsonian Astrophysical Observatory. These
efforts have initiated interest in many universities and laboratories to
better understand the simulations, The recent cmphasis has centered around
the new missions that have become better understood since the new dynamical
modeling has been discussed in the literature.

18




Currently, NASA is pushing the concepts of tethers that relate to the
Earth resources or Earth oriented activities. The new ideas of gravity
gradient induced gravitationsl forces for manned activities (about .1 g's),
of "free" sltitude additions from "spare” masses provided to the shuttle
orbits, and of scientific measurements in the upper atmosphere from medium
orbits of the orbiters have created much interest in the earth resources and
space sciences community.

Two joint U.S.~Italian missions scheduled for 1987 and 1988 will
demonstrate the feasibility and benefits of tethered satellite systems
deployed from the shuttle orbiter., The tether will be a flexible metallic or
synthetic line, 1-2 mm in diameter and 100 Km or more in length, carrying a
total payload mass of 500 Kg. Because of the differences in enviroamental
parameters at the outer planets, (such as gravity and serodrag) the
requirements and characteristics of tethers will vary from the above Earth
oriented missions, Furthermore, current work on tether dynamics and controls
are relatively immature., 1t is timely now to verify the tether concept for
applications to future planetary, earth resources, and military missions.

Several representatives of the SP-100 project attended the NASA
sponsored Tether Workshop in Williamsburg, Virginia in June 1983, Their
participation in the Tethers Workshop resulted in a better understanding of
the current technology and programmatic paths, The emphasis was related to
Earth oriented activities and rarely investigated the possibilities of
interplanetary activities. A major conclusion from this Tether Workshop was
that the modeling of the dynamics and control of orbiting tethers must be
investigated thoroughly, The current models vary in sssumptions, in
structure, and sometimes in conclusions.

The support of SP-100 condaucted a basic rceference rescarch effort with
the compiling of manmy articles and books pertaining to tether systems (sce
attached bibliography). The initial assessment of the dynamics and control
of tether satellite systems has shown that there are four potential benefits.

(a) Radiation Attenuation: Figure 4 shows a generic case of a nuclear power

system with the length of the tether varying from 25 meters (baselime)

to 500 meters. This increase in distance (r) decreases the amount of

19




9 i
__r_SPlﬂ.

R SHIELD o0 s et o ey L SRR,

W) /- \ 5 8z 10 314
D1ATION // \ 50  78.7 5 78.5
75 73.3 3.3 34.9
BOURDARY  ©- \ 100 68.2 2.5 19,6
4 \ B s 1.0 3,14
/ "' 500 * 2606 05 079
/ 2 . \ SHIELD AREA & MASS
* % 's For 500 METER DIAMETER

®SAFE” ZONE

/g—f’ ‘h’ T i' <. oy
< o ™2 F g = o
"~ - L.e- ‘y".v ('I’c\-,
° e ."":—-— - ' ’.f\b
.':\ LX) } R '.':.’?:“ 9 ——ﬁ-'n‘-
1) mio- 2SS R
- e
AN
o” : °e e~ ‘=.o [ L4

FIGURR 4: Tether Radiation Atteawation

20




(b)

(c)

(d)

shield area to protect s satellite safety zone by a rate of 1/52, A
tether on the order of 10 km might render shielding totally unnecessary.
Vibration Isolation: A tether system will provide the ability to
attenuate vibrations through the use of a tether with no (very small)
transuission of shear forces. This provides a protection from vibration
that must be studied to guantify the effect.

Gravity Field: Tho stable tether system will rotate once during each
orbit, This slow rotation and long tether length (moment arm) will
provide a small smount of artificial gravity through centrifigual force.
This could have significant safety implications for the reactor.
Attitude Adjustment: By placing the center of mass around the
attechment point, fine sdjustments can be achieved of the attitude of
the satellite. This can be accomplished with eclectromechanical devices

instead of costly propellant usage.
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IV, COMMONALITY

Several attitude control constraints and hardwa:: i.ses are cormon to the
two configurations, The SP-100 attitude control subsystem has both
tomperature and radiation constraints., The radiation limit for the Galileo
project which is § x 109 protons/cw2 and 1 x 106 neutrons/cm2 with design
margin of 2, was selected for the electromnics. Off-~the—shelf
electromechanical devices such as resolvers reaction wheels, gyros and motors
have a limit of 250 to 500 krads due to lubrication and insulation breakdown,
These o¢lectromotive devices can be designed for even higher radiation levels,
Presently, sun sensors can tolerate up to 150 krads, however, star sensors
are not radiation hardened and therefore present a problem., Earth sensors
radiation hardened to greater than 500 krad sre currently available.

¥hen the reactor is operational the radiator temperature may be ss high
as 900° K. V¥hen the reactor is shut down, the electronics will need heaters,
The electronics temperature range which has been selected for now is the same
as for the Galileo Project which is from 273© to 32892 XK with qualification
limits at 2530 to 348K,

The extreme temperature range leads to consideration of heaters and
insulation for the propulsion system. The Jet Propulsion Laboratory's limits
for Aydrazine with Shell 405 catalyst are from 275° K to 3222 X, although an
upper limit 340°K is possible. This yields an Igp of 233 seconds at 300 psai
for an expansion ratio of 50. To prevent propellant line freezimng, line
heaters are required. Viking and Galileo Projects selected dinitrogen
tetroxide (NTO) and monomethyl hydrazine (MMH) which has s temperature range
from 2210 K to 361° K with an Igp of 349 seconds at 140 psia for an expansion
ratio of 40, Unfortunately, unturmed NTO and MMH leaves solid particle
residue., Clorine pentafloride (CPF) and MMH has a temperature range from 221°
K to 338° K with an Igp of 363 seconds at 150 psia for an expansion ratio of
40, For & lower freezimg point with Mixed Hydrazine Fuel 3 (MHF-3) which has
a range from 208° K to 338° K and an Igp of 342.1 seconds at 150 psia and an
expansion ratio of 40, CPF has a higher Igp» higher demsity, lower freezing
point (170° K), higher combustion efficiency and lower plume contamination
then Hydrazine or NTO and MMH. The CPF technology is widely available and it
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has been burned in test bed engines at the Air Force Rocket Propulsion
Laboratory, Rocketdyme, Aerojet Gemeral, Thiokol Reaction Motors, TRY, and the
Jet Propulsion Laboratory. While CPF is corrosive, it has been stored for up.
to ten years safely. Therefore CPF with MNHE or MHF-3 has been recommendod for
SP-100,

The potential of propellant line freezing combined with. the propellant
line deployment has led to the decision that each subsatellite, whether
deployed by a beam or tether, should have its own set of propellant tanks and
lines with one attitude control system for the thrusters.

To reduce the high temperature and high radiation impacts on the user's
subsystem the user will te remote from the reactors. This led to the beam and
tether configurations, both of which require various sensors and actuators to
handle the attitude control comsiderations.

Since large amounts of eleectrical power are available, attitude control
should emphasize reaction wheels, control moment gyros, magnetic torquers,
rather than thrusters as primary devices. Table 1 shows the possible primary
effectors and sensors for various mission orbits and trajectories. Magnetic
torquers and gravity gradient are viable contenders for the primary system
only in low planetary orbits. The exact choice of effectors and sensors

depends on mission requirements and further investigation of the SP-100 design.

TABLE 1: Control Implementation

HIGHLY
LOW ORBIT HIGH ORBIT ELLIPTICAL ORBIT INTERPLANETARY

THRUSTERS X X X X
GRAVITY GRADIENT X

MAGNETIC TORQUERS X

CONTROL MOMENT GYRO X X X X
REACTION WHEEL X X X X
MOMENTUM WHEEL X X X X
SUN SENSOR X X X X
STAR SENSOR X X X X
EARTH SENSOR X X X X
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V. CONCLUSION

The deployable beam configuration uses an off-the—shelf item with a 20:1
expansion zatio, Thus s 24 meter beam uses slightly more than one meter of
shuttle cargo bay length, The dynamics are well understood, although the
powsr and AACS cable doployment with the beam is s concern., This is a good
conservative spproach for today.

Tethers offer a low radiation user eanvironment and vibration isolation,
There sre many advantages for applications of tethers which are harder to
achieve with the beam configuration: radiation isolation, artificial
gravity, and vibration isolation are three. While tether materxials and
fabrication uceds further study, this is a good approach for future space
power applications. Tethers should not be proposed as the baseline system at
the present time; however, the study effort should continue to insure that
the benefits could he incorporated if they fulfill their potential.

The attitude control pathfinder study is a good start, but without
adequate mission requirements or tools, the design options camnot be fully
assessed., Therefore, the following is recommended:

Ia the beam dynamics area, the dynamics model should be put into &
computer simulation. Further, modeling and subsequent incorporation into the
sinunlation program is required to quantify:

1, the effects of fluid motion in the basebody om the dynamic behavior of
the system; '
2. the effects of rotating or reciprocating machinery in the base body,

particularly when the rotating body is pon-axisvmmetric. This may lead
to a strong coupling between the motion of the rotor and appendage
deformations.

The controls work presented in this report is very preliminary in the
sense that the final results were restricted to a single mode represeatation
and a single axis control., A generalization to several modes and three axes
control is needed. Furthermore, a decision on the exact location of semnsors
and effectors in the light of the existing constraints still has to be made;
and this will have an impact on the final form of the control equations.
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- In the tether area, using the extensive bibliography, tether dynamics
and controls should be investigated further at JPL with san eye toward
application to the next gemeration SP-100.
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